Development of Openfoam Solvers for Incompressible Navier–stokes Equations Based on High-order Runge–kutta Schemes

نویسندگان

  • L. BINCI
  • R. RICCI
چکیده

Nowadays open-source CFD codes provide suitable environments for implementation and testing low-dissipative algorithms typically used for turbulence simulation. Moreover these codes produce a reliable tool to test high-fidelity numerics on unstructured grids, which are particularly appealing for industrial applications. Therefore in this work we have developed several solvers for incompressible Navier–Stokes equations (NSE) based on high-order explicit and implicit Runge–Kutta (RK) schemes for time-integration. Note that for NSE space discretization the numerical technology available within OpenFOAM (Open-source Field Operation And Manipulation) library was used. Specifically in this work we have considered explicit RK projected type schemes for index 2 DAE system and L-stable Singly Diagonally Implicit Runge–Kutta (SDIRK) techniques. In the latter case an iterated PISO-like procedure based on Rhie–Chow correction was used for handling pressure-velocity coupling within each RK stage. The accuracy of the considered algorithms was evaluated studying the Taylor–Green vortex. Moreover several benchmark solutions have been computed in order to assess the reliability, the accuracy and the robustness of the presented solvers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segregated Runge-Kutta methods for the incompressible Navier-Stokes equations

In this work, we propose Runge-Kutta time integration schemes for the incompressible Navier-Stokes equations with two salient properties. First, velocity and pressure computations are segregated at the time integration level, without the need to perform additional fractional step techniques that spoil high orders of accuracy. Second, the proposed methods keep the same order of accuracy for both...

متن کامل

New explicit Runge-Kutta methods for the incompressible Navier-Stokes equations

New explicit Runge-Kutta methods are presented for the time integration of the incompressible Navier-Stokes equations. The differential-algebraic nature of these equations requires that additional order conditions are satisfied compared to the classical order conditions for ordinary differential equations. The methods presented in this work are high-order accurate for both velocity and pressure...

متن کامل

High-order Discontinuous Galerkin Methods for Incompressible Flows

Abstract. The spatial discretization of the unsteady incompressible Navier-Stokes equations is stated as a system of Differential Algebraic Equations (DAEs), corresponding to the conservation of momentum equation plus the constraint due to the incompressibility condition. Runge-Kutta methods applied to the solution of the resulting index-2 DAE system are analyzed, allowing a critical comparison...

متن کامل

A staggered grid, high-order accurate method for the incompressible Navier-Stokes equations

A high-order accurate, finite-difference method for the numerical solution of the incompressible Navier–Stokes equations is presented. Fourth-order accurate discretizations of the convective and viscous fluxes are obtained on staggered meshes using explicit or compact finite-difference formulas. High-order accuracy in time is obtained by marching the solution with Runge–Kutta methods. The incom...

متن کامل

High Order Semi-Lagrangian Methods for the Incompressible Navier-Stokes Equations

We propose a class of semi-Lagrangian methods of high approximation order in space and time, based on spectral element space discretizations and exponential integrators of Runge-Kutta type. The methods were presented in [7] for simpler convection-diffusion equations. We discuss the extension of these methods to the Navier-Stokes equations, and their implementation using projections. SemiLagrang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016